Informativo técnico

Inovação Tecnológica no Combate às Micotoxinas

NOVAS PERSPECTIVAS NO CONTROLE DE MICOTOXINAS

O Brasil é considerado globalmente um país de excelência em produção agropecuária, especialista no processo de transformação de grãos em proteína animal de altíssima qualidade. Neste país, de proporções continentais, aproximadamente 80% da produção nacional de milho é destinada à fabricação de rações para suínos e aves (ABIMILHO, 2008). Devido às condições climáticas dos trópicos, nossos grãos estão constantemente expostos ao crescimento fúngico e à consequente formação de seus metabólitos secundários: as micotoxinas. Além da predisposição climática, a grande demanda por grãos na produção animal faz com que as agroindústrias brasileiras utilizem para a fabricação de rações grãos de qualidade longe das ideais, principalmente no que se diz respeito a micotoxinas. Resta aos responsáveis pelas áreas técnica e de gestão atuar corretivamente para minimizar os efeitos negativos que as micotoxinas causam nos parâmetros produtivos e sanitários das aves e suínos.

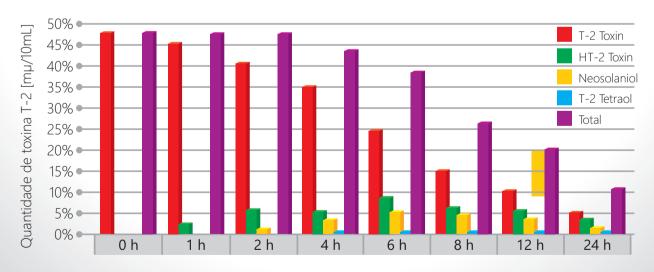
Dentre as centenas de toxinas produzidas pelos fungos, sabe-se que as micotoxinas de maior importância na produção animal são aquelas oriundas de fungos do gênero Aspergillus spp (aflatoxina e ocratoxina) e Fusarium spp (zearalenona, fumonisina e tricotecenos como DON e T-2). Estudos de prevalência das diferentes micotoxinas em rações da América Latina demonstram que a maior ocorrência atual é derivada do crescimento de *Fusarium* spp nas lavouras. Em pesquisas realizadas no Brasil, entre 50 a 90% das amostras de grãos apresentaram positividade para Fumonisina, uma das principais toxinas do Fusarium spp. Segundo Mallman et al. (2007), a contaminação por micotoxinas pode ocorrer em vários estágios de produção dos grãos, como na colheita, transporte, processamento e armazenamento. As melhorias na qualidade do processo de colheita, processamento e estocagem de grãos no Brasil fizeram com que as micotoxinas produzidas pelos fungos durante o período pós-colheita (p.ex. Aflatoxinas)

apresentassem incidência reduzida gradualmente. Por outro lado, micotoxinas como as produzidas pelo gênero *Fusarium* spp, são formadas nos grãos ainda na lavoura, tornando a existência dessas toxinas independente da qualidade da estocagem. Como resultado, as micotoxinas derivadas do *Fusarium* spp tem tomado crescente importância nos programas de controle.

Aos envolvidos na produção de aves e suínos, são conhecidos de longa data os prejuízos causados pelas micotoxinas no desempenho zootécnico e sanitário dos animais. Com esses prejuízos na ponta do lápis, as agroindústrias dedicam recursos humanos e financeiros para minimizar as perdas relacionadas às micotoxinas. Historicamente, os inibidores de crescimento fúngico e os adsorventes figuraram como a principal estratégia para o controle de micotoxinas; porém, modernas tecnologias surgiram nos últimos anos proporcionando uma nova perspectiva para o controle de micotoxinas na produção animal. Os inibidores fúngicos previnem o crescimento vegetativo dos fungos e a consequente formação de micotoxinas durante a estocagem dos grãos. Já os adsorventes, atuam de forma eficaz na eliminação de micotoxinas polares dentro do trato digestório dos animais, já que sua adsorção é feita principalmente por polaridade (carga iônica das moléculas).

Como citado acima, anteriormente, o foco principal era dado no controle das Aflatoxinas, por considerá-las muito prevalentes; hoje observa-se uma maior preocupação com as micotoxinas produzidas por fungos do gênero *Fusarium* spp (ZEA, DON, T-2, Fumonisinas, etc.). Estas micotoxinas apresentam particularidades físico-químicas que as diferenciam das demais, especialmente por serem geralmente moléculas de baixa polaridade. Sendo produzidas já no campo e possuindo carga polar reduzida, as toxinas oriundas do *Fusarium* spp não são adequadamente controladas pelos inibidores fúngicos de estocagem e pelos adsorventes

tradicionais. O aprofundamento no conhecimento da prevalência e mecanismos de ação das micotoxinas resultou no desenvolvimento de novas plataformas tecnológicas, permitindo uma abordagem integral do controle de micotoxinas na produção animal.


Nos últimos anos, o uso de enzimas para inativação de micotoxinas, tornou-se uma ferramenta segura e eficaz, com efeitos sobre uma ampla gama de micotoxinas que em sua maioria não são adequadamente controladas através dos métodos tradicionais.

MECANISMOS ENZIMÁTICOS DE INATIVAÇÃO DE MICOTOXINAS

Enzimas são estruturas amplamente conhecidas por seus efeitos vitais no metabolismo dos seres vivos, com atividades que variam desde a contração muscular até a troca gasosa nos pulmões. As enzimas são substâncias orgânicas de natureza normalmente proteica, com atividade intra e extracelular. Possuem funções catalisadoras de reações químicas, permitindo que as mesmas ocorram da forma e velocidade necessárias. Essa capacidade catalítica das enzimas também as torna adequadas para aplicações industriais, como na produção de antimicrobianos em larga escala e na melhoria da digestibilidade de determinados nutrientes das rações de monogástricos (por exemplo a fitase). Dentro dessa vertente, mecanismos de inativação enzimática de toxinas foram alvo de investigação por várias instituições de pesquisa, resultando em uma plataforma eficaz para a detoxificação das micotoxinas que dificilmente são controladas por mecanismos tradicionais na

produção animal.

Estudos nas áreas de microbiologia e enzimologia levaram à descoberta de enzimas secretadas por microrganismos, com capacidade de metabolizar as micotoxinas. Este mecanismo denominou-se detoxificação, biotransformação ou inativação enzimática. A detoxificação de micotoxinas é conhecida desde a década de 60, onde foram publicados os primeiros relatos da biotransformação de toxinas por microrganismos. Do ponto de vista prático, o primeiro resultado importante deu-se em meados da década de 80, quando a capacidade de inativação da toxina T-2 foi demonstrada (Gráfico 1). Isso foi resultado da observação da fisiologia dos ruminantes, já que os mesmos não apresentavam sinais de intoxicação por certas micotoxinas. A partir do fluido ruminal, isolaram-se alguns microrganismos capazes de metabolizar a porção tóxica dos tricotecenos. Demonstrou-se então, que determinados microrganismos secretavam enzimas

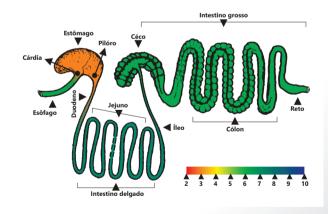
Gráfico 1. Biotransformação da toxina T-2 no fluido ruminal. Fonte: Bata et al., 1985.

capazes de clivar as micotoxinas em regiões específicas, resultando em metabólitos atóxicos ou de baixa toxicidade. Com o uso de técnicas de biotecnologia e fermentação industrial, viabilizou-se a produção dessas enzimas para inativação de micotoxinas em grande escala.

DETOXA PLUS® – ADITIVO INATIVADOR DE MICOTOXINAS

Recentemente, a plataforma enzimática de detoxificação de micotoxinas assumiu uma posição de referência no combate às micotoxicoses na produção animal. Considerando as micotoxinas de maior importância e as peculiaridades fisiológicas das aves e suínos, o Instituto Húngaro-Canadense de Pesquisas Biotecnológicas **Dr. Bata Ltd.** desenvolveu um inativador de micotoxinas moldado especialmente para apresentar ação ótima no trato digestório de monogástricos. Comercializado na Europa e Ásia há mais de 5 anos, o **DETOXA PLUS**° chega ao mercado brasileiro através de uma parceria entre a **Dr. Bata Ltd.** e a **Vetanco Brasil**.

Como as enzimas são extremamente específicas (catalisam reações químicas em um determinado ponto de uma molécula) e dependentes de um meio característico (temperatura, pH, tempo, etc.), os pesquisadores da Dr. Bata Ltd. buscaram encontrar enzimas que fossem específicas para as micotoxinas de importância em produção de monogástricos e que apresentassem sua atividade potencializada no ambiente do trato gastrointestinal destes animais. Com estes objetivos, desenvolveu-se o **DETOXA PLUS**, um inativador eficaz e seguro para uso na nutrição animal, especialmente focado no controle das micotoxinas importantes na produção de aves e suínos.


O complexo enzimático presente no **DETOXA PLUS*** é produzido por leveduras do tipo *Saccharomyces cerevisiae*, que além de secretar as enzimas, também possuem características físicas na sua parede, as quais são importantes para o controle de micotoxinas por adsorção.

Fatores críticos para eficácia da inativação enzimática de micotoxinas, no trato digestório dos monogástricos:

- **1. Estabilidade Térmica** (Gráfico 2): as enzimas presentes no **DETOXA PLUS**[®] permanecem ativas mesmo após a peletização das rações;
- **2. Atividade dependente do pH do meio** (Gráfico 3): para que a atividade enzimática apresente seu pico no local de maior interesse para

o controle de micotoxinas é fundamental que as enzimas sejam adaptadas ao ambiente do trato digestório dos monogástricos. O objetivo é que as enzimas já atuem na porção anterior do trato digestório (estômago) por dois motivos principais: a inativação ocorreria antes da absorção intestinal das micotoxinas (Figura 1), minimizando a toxicidade a elas relacionada. Adicionalmente, como a reação enzimática de inativação é tempo-dependente, a atividade torna-se mais eficiente nessas porções do trato digestório, uma vez que o grande tempo de retenção do alimento nessas estruturas permite um maior contato e consequente ação das enzimas.

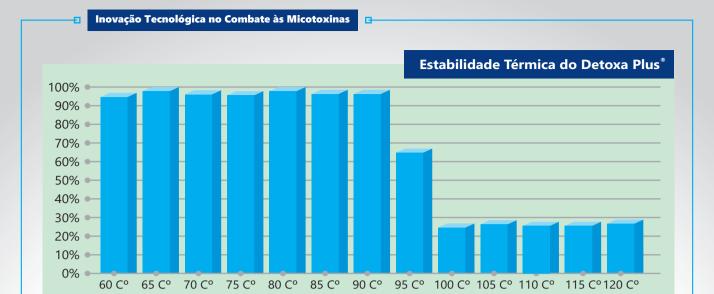

Para que um inativador enzimático funcione eficazmente, é importante que possua características que se relacionem com o metabolismo dos animais em questão, além de possuir atividade voltada para as micotoxinas realmente importantes para essas espécies. O desenvolvimento do **DETOXA PLUS**® é resultado de anos de pesquisas, chegando a um produto de alta qualidade, seguro e eficaz para o controle das micotoxinas importantes na avicultura e suinocultura modernas.

Figura 1. Anatomia do sistema digestivo do suíno, as cores apontam o pH fisiológico de cada órgão. Adaptado de Muirhead & Alexander, 1997.

Gráfico 2. Estabilidade térmica do Detoxa Plus®, após 30 min. na temperatura. Fonte: Dr. Bata Ltd.

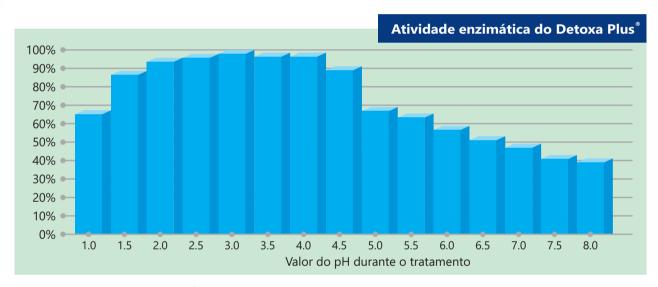


Gráfico 3. Atividade do Detoxa Plus® de acordo com o pH do meio. Fonte: Dr. Bata Ltd.

REFERÊNCIAS:

ABIMILHO, Associação das Indústrias de Milho. **Processos Industriais e Aplicações-Aproveitamento do Milho.** Disponível em: http://www.abimilho.com.br/estatistica/producao_mu ndial. Acesso em: 20 out. 2012. 2008.

BENNETT, J.W.; KLICH, M. **Mycotoxins.** Vol. 16. Washington. Clinical Microbiology Reviews. 2003.

GIMENO, A; MARTINS, M.L. **Micotoxinas y** micotoxicosis en animales y humanos: special nutrients. 3 ed. Miami: Special Nutrients. 2011.

HALÁSZ, et al., Decontamination of Mycotoxin-

Containing Food and Feed by Biodegradation. 2009.

MALLMANN, C. A., et al. **Desempenho** produtivo de frangos de corte intoxicados com diferentes concentrações de aflatoxinas na dieta. Porto Alegre, UFRGS. XX Congresso Latinoamericano de Avicultura de Avicultura. 2007.

MUIRHEAD, M.; and ALEXANDER, T. **Managing Pig Health and the treatment of disease.** 1 ed.
5M Enterprises Ltd. 1997.

SWAMY, H.V.L.N. **Mycotoxicoses in poultry: in the overview. from the Asia – Pacific region.**London. Biotechnology in the Feed Industry. 2005.

